| Joyce Farrell

V.

Programming
Logic &Design

PROGRAMMING LOGIC
AND DESIGN

COMPREHENSIVE

PROGRAMMING LOGIC
AND DESIGN

JOYCE FARRELL

~ + CENGAGE
1% learning

Australia « Brazil « Japan « Korea « Mexico « Singapore « Spain « United Kingdom « United States

| 4

CENGAGE
Learning

Programming Logic and Design,
Comprehensive

Ninth Edition

Joyce Farrell

Senior Product Director:

Kathleen McMahon
Product Team Leader: Kristin McNary
Associate Product Manager: Kate Mason
Senior Content Developer: Alyssa Pratt

Senior Content Project Manager:
Jennifer Feltri-George

Manufacturing Planner: Julio Esperas
Art Director: Diana Graham

Production Service/Composition:
SPi Global

Cover Photo:
Colormos/Photodisc/Getty Images

Printed in the United States of America
Print Number: 01 Print Year: 2018

© 2018 Cengage Learning®

ALL RIGHTS RESERVED. No part of this work covered by the
copyright herein may be reproduced or distributed in any form
or by any means, except as permitted by U.S. copyright law,
without the prior written permission of the copyright owner.

For product information and technology assistance, contact us at
Cengage Learning Customer & Sales Support, 1-800-354-9706
For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions
Further permissions questions can be emailed to
permissionrequest@cengage.com

Library of Congress Control Number: 2016959742
ISBN: 978-1-337-10207-0

Cengage Learning

20 Channel Center Street
Boston, MA 02210

USA

Unless otherwise noted all items © Cengage Learning.

Cengage Learning is a leading provider of customized learning
solutions with employees residing in nearly 40 different coun-
tries and sales in more than 125 countries around the world.
Find your local representative at www.cengage.com.

Cengage Learning products are represented in Canada by
Nelson Education, Ltd.

To learn more about Cengage Learning Solutions, visit
www.cengage.com

Purchase any of our products at your local college store or at
our preferred online store www.cengagebrain.com

Brief Contents

Preface Xxvi

An Overview of Computers and Programming . 1

Elements of High-Quality Programs38
Understanding Structure.87
Making Decisions 124
Looping176
Arrays. o .. 227
File Handling and Appllca’uons e ... 0272
Advanced Data Handling Concepts 321
Advanced Modularization Techniques . . . 366
Object-Oriented Programming. 420
More Object-Oriented Programming

Concepts464
Event-Driven GUI Programming,

Multithreading, and Animation 507
Understanding Numbering Systems

and Computer Codes b39
Solving Difficult Structuring Problems . . . 547
Glossary.bbé6

Indexb571

Contents

vii

Preface Xxvi

An Overview of Computers and Programming . 1

Understanding Computer Systems 2
Understanding Simple Program Logic 5
Understanding the Program Development Cycle 8
Understanding the Problem. 8
Planning the Logic. 10
Coding the Program 10
Using Software to Translate the Program into Machine
Languageo 11
Testing the Program. 12
Putting the Program into Production. 13
Maintaining the Program 14
Using Pseudocode Statements and Flowchart Symbols . . . 15
Writing Pseudocode 15
Drawing Flowcharts 17
Repeating Instructions. 19
Using a Sentinel Value to End a Program 20
Understanding Programming and User Environments 23
Understanding Programming Environments 23
Understanding User Environments 25
Understanding the Evolution of Programming Models 27
Chapter Summary 28
Key Terms 29
Exercises.o 32
Elements of High-Quality Programs38
Declaring and Using Variables and Constants 39
Understanding Data Types 39
Understanding Unnamed, Literal Constants 39
Working with Variables. 40

Understanding a Declaration’s Data Type 41

Understanding a Declaration’s Identifier 42

Assigning Values to Variables. 45
Declaring Named Constants 46
Performing Arithmetic Operations. 47
The Integer Data Type 50
Understanding the Advantages of Modularization. 51
Modularization Provides Abstraction. 52
Modularization Helps Multiple Programmers to Work
onaProblem 53
Modularization Allows You to Reuse Work 53
Modularizing a Program 54
Declaring Variables and Constants within Modules 58
Understanding the Most Common Configuration
for Mainline Logic 60
Creating Hierarchy Charts 64
Features of Good Program Design 66
Using Program Comments 67
Choosing Identifiers 69
Designing Clear Statements 71
Writing Clear Prompts and Echoing Input 72
Maintaining Good Programming Habits 74
Chapter Summary 75
Key Terms 76
Exercises. 79
Understanding Structure.87
The Disadvantages of Unstructured Spaghetti Code 88
Understanding the Three Basic Structures. 90
The Sequence Structure 90
The Selection Structure 91
The Loop Structure 92
Combining Structures 93
Using a Priming Input to Structure a Program 99
Understanding the Reasons for Structure 106
Recognizing Structure 107
Structuring and Modularizing Unstructured Logic. 110
Chapter Summary 115
Key Terms s 115

Exercises. 117

Making Decisions 124

The Selection Structure 125
Using Relational Comparison Operators 129
Avoiding a Common Error with Relational Operators . . .133
Understanding AND Logic 134
Nesting AND Decisions for Efficiency 137
Using the AND Operator 139
Avoiding Common Errors in an AND Selection 141
Understanding OR Logic 143
Writing OR Selections for Efficiency. 145
Using the OR Operator. 147
Avoiding Common Errors in an OR Selection. 147
Understanding NOT Logic 153
Avoiding a Common Error in a NOT Expression. 154
Making Selections within Ranges 155
Avoiding Common Errors When Using Range Checks . . .157
Understanding Precedence When Combining
AND and OR Operators 160
Understanding the case Structure 163
Chapter Summary 165
Key Terms 166
Exercises. Lo 167
Looping176
Appreciating the Advantages of Looping. 177
Using a Loop Control Variable 179
Using a Definite Loop with a Counter 179
Using an Indefinite Loop with a Sentinel Value 181
Understanding the Loop in a Program’s Mainline Logic . .183
Nested Loops. 185
Avoiding Common Loop Mistakes 190

Mistake: Failing to Initialize the Loop Control Variable. . .190
Mistake: Neglecting to Alter the Loop Control Variable . .191
Mistake: Using the Wrong Type of Comparison When

Testing the Loop Control Variable 192
Mistake: Including Statements Inside the Loop Body
that Belong Outside the Loop 194
Usingaforloop. 199
Using a PosttestLoop 201

Recognizing the Characteristics Shared
by Structured Loops 203

Common Loop Applications 205

Using a Loop to Accumulate Totals 205
Using a Loop to Validate Data 209
Limiting a Reprompting Loop. 209
ValidatingaData Type 212
Validating Reasonableness and Consistency of Data . . .213
Comparing Selections and Loops 214
Chapter Summary 218
Key Terms 218
Exercises. 220
Arrays.227
Storing DatainArrays 228
How Arrays Occupy Computer Memory 228
How an Array Can Replace Nested Decisions. 231
Using Constants with Arrays 238
Using a Constant as the Size of anArray 238
Using Constants as Array Element Values 239
Using a Constant as an Array Subscript 239
Searching an Array for an Exact Match 240
Using Parallel Arrays 244
Improving Search Efficiency 248
Searching an Array for a Range Match. 250
Remaining within Array Bounds 255
Understanding Array Size 255
Understanding Subscript Bounds 255
Using a for Loop to Process anArray 258
Chapter Summary 260
Key Terms 261
Exercises. 261
File Handling and Applications 272
Understanding Computer Files 273
Organizing Files. 274
Understanding the Data Hierarchy. 275
Performing File Operations. 277
Declaring a File Identifier. 277
OpeningaFile, 278
Reading Data from a File and Processing It 278
Writing DatatoaFile 281

ClosingafFile. 281

A Program that Performs File Operations 282

Understanding Control Break Logic 285
Merging Sequential Files. 290
Master and Transaction File Processing 299
Random Access Files 308
Chapter Summary 309
Key Terms 310
Exercises. Lo 312
Advanced Data Handling Concepts 321
Understanding the Need for Sorting Data 322
Using the Bubble Sort Algorithm 324
Understanding Swapping Values 324
Understanding the Bubble Sort 325
Sorting Multifield Records 340
Sorting Data Stored in Parallel Arrays. 340
Sorting Records asaWhole 341
Other Sorting Algorithms. 342
Using Multidimensional Arrays 345
Using Indexed Files and Linked Lists 351
Using Indexed Files 352
Using Linked Lists. 353
Chapter Summary 356
Key Terms 357
Exercises. 358
Advanced Modularization Techniques . . . 366
The Parts of aMethod. 367
Using Methods with no Parameters 368
Creating Methods that Require Parameters 371
Creating Methods that Require Multiple Parameters. . . .377
Creating Methods that ReturnaValue 379
UsinganIPO Chart 384
Passing an Array to a Method 386
Overloading Methods 394
Avoiding Ambiguous Methods. 397
Using Predefined Methods 400
Method Design Issues: Implementation Hiding, Cohesion,
and Coupling 402
Understanding Implementation Hiding 402
Increasing Cohesion. 403
Reducing Coupling. 404

Understanding Recursion. 405

Xii

Chapter Summary 410

KeyTerms 411
Exercises. 412
Object-Oriented Programming. 420
Principles of Object-Oriented Programming 421
Classes and Objects. 421
Polymorphism. 424
Inheritance Lo 426
Encapsulation.o 426
Defining Classes and Creating Class Diagrams. 428
Creating Class Diagrams. 430
The Set Methods 433
The Get Methods 434
Work Methods. 435
Understanding Public and Private Access 437
Organizing Classes« . . o ... 440
Understanding Instance Methods 441
Understanding Static Methods 447
Using Objects. 448
Passing an Objectto a Method 449
Returning an Object from a Method 450
Using Arrays of Objects 453
Chapter Summary 455
Key Terms s 456
Exercises. Lo 458

More Object-Oriented Programming

Concepts464
Understanding Constructors 465
Default Constructors 466
Non-default Constructors. 468
Overloading Instance Methods and Constructors 469
Understanding Destructors. 472
Understanding Composition 474
Understanding Inheritance 475
Understanding Inheritance Terminology 478
Accessing Private Fields and Methods
ofaParentClass. 481

Overriding Parent Class Methods in a Child Class. 486

Using Inheritance to Achieve Good Software Design . . .486
An Example of Using Predefined Classes:

Creating GUI Objects 487
Understanding Exception Handling 488
Drawbacks to Traditional Error-Handling Techniques . . .489
The Object-Oriented Exception-Handling Model 491
Using Built-in Exceptions and Creating
Your Own Exceptions 493
Reviewing the Advantages of Object-Oriented Programming 494
Chapter Summary 495
Key Terms 496
Exercises. e 497

Event-Driven GUI Programming,

Multithreading, and Animation 507
Understanding Event-Driven Programming 508
User-Initiated Actions and GUI Components 511
Designing Graphical User Interfaces 514
The Interface Should Be Natural and Predictable 514
The Interface Should Be Attractive, Easy to Read,
and Nondistracting. 515
To Some Extent, It's Helpful If the User Can Customize
Your Applications. 516
The Program Should Be Forgiving. 516
The GUI Is Only a MeanstoanEnd 516
Developing an Event-Driven Application 517
Creating Wireframes. 518
Creating Storyboards 518
Defining the Storyboard Objects in an Object Dictionary. .519
Defining Connections Between the User Screens 520
Planning the Logic. 520
Understanding Threads and Multithreading. 525
Creating Animation 528
Chapter Summary 531
Key Terms e 532

Exercises. 533

Xiv

Understanding Numbering Systems
and Computer Codes

Solving Difficult Structuring Problems .

Glossary .

Index

. 539
. 547

. 556
. 571

XVi

Preface

Programming Logic and Design, Comprehensive, Ninth Edition, provides the beginning
programmer with a guide to developing structured program logic. This textbook assumes
no programming language experience. The writing is nontechnical and emphasizes

good programming practices. The examples are business examples; they do not assume
mathematical background beyond high school business math.

Additionally, the examples illustrate one or two major points; they do not contain so
many features that students become lost following irrelevant and extraneous details. The
examples in this book have been created to provide students with a sound background in
logic, no matter what programming languages they eventually use to write programs. This
book can be used in a stand-alone logic course that students take as a prerequisite to a
programming course, or as a companion book to an introductory programming text using
any programming language.

Organization and Coverage

Programming Logic and Design, Comprehensive, Ninth Edition, introduces students to
programming concepts and enforces good style and logical thinking. General programming
concepts are introduced in Chapter 1.

Chapter 2 discusses using data and introduces two important concepts: modularization
and creating high-quality programs. It is important to emphasize these topics early so
that students start thinking in a modular way and concentrate on making their programs
efficient, robust, easy to read, and easy to maintain.

Chapter 3 covers the key concepts of structure, including what structure is, how to
recognize it, and most importantly, the advantages to writing structured programs. This
chapter’s content is unique among programming texts. The early overview of structure
presented here provides students a solid foundation for thinking in a structured way.

Chapters 4, 5, and 6 explore the intricacies of decision making, looping, and array
manipulation. Chapter 7 provides details of file handling so that students can create
programs that process a significant amount of data.

In Chapters 8 and 9, students learn more advanced techniques in array manipulation and
modularization. Chapters 10 and 11 provide a thorough, yet accessible, introduction to con-
cepts and terminology used in object-oriented programming. Students learn about classes,
objects, instance and static class members, constructors, destructors, inheritance, and the

Organization and Coverage

advantages of object-oriented thinking. Chapter 12 explores some additional
object-oriented programming issues: event-driven GUI programming, multithreading,
and animation.

Two appendices instruct students on working with numbering systems and providing
structure for large programs.

Programming Logic and Design combines text explanation with flowcharts and pseudocode
examples to provide students with alternative means of expressing structured logic.
Numerous detailed, full-program exercises at the end of each chapter illustrate the concepts
explained within the chapter, and reinforce understanding and retention of the material
presented.

Programming Logic and Design distinguishes itself from other programming logic books in
the following ways:

o It is written and designed to be non-language specific. The logic used in this book can
be applied to any programming language.

e The examples are everyday business examples: no special knowledge of mathematics,
accounting, or other disciplines is assumed.

e The concept of structure is covered earlier than in many other texts. Students are
exposed to structure naturally, so that they will automatically create properly designed
programs.

o Text explanation is interspersed with both flowcharts and pseudocode so that students
can become comfortable with these logic development tools and understand their inter-
relationship. Screen shots of running programs also are included, providing students
with a clear and concrete image of the programs’ execution.

e Complex programs are built through the use of complete business examples. Students
see how an application is constructed from start to finish, instead of studying only
segments of a program.

Features

This text focuses on helping students become better programmers, as well as helping them
understand the big picture in program development through a variety of features. Each

-: chapter begins with objectives and ends with a list of key terms and a summary; these
xviii

useful features will help students organize their learning experience.

Using a Priming Input to Structure a Program

Don't Do It

, figures,

This logic is structured,
g . . but flawed. When the user
and |IIUStratlons prOVIde inputs the eof value, it will

incorrectly be doubled and

the reader with a visual —p e
. . Jeclarations s
Iearnlng eXpe”ence num originalNumber

num calculatedAnswer

how NOT to do something—for
example, having a dead code

path in a program. This icon
provides a visual jolt to the student,
emphasizing that particular figures
are NOT to be emulated and making

students more careful to recognize

problems in existing code.

calculatedAnswer =
originalNumber * 2

Figure 3-17 Structured but incorrect solution to the number-doubling problem

tested. Instead, a result is calculated and displayed one last time before the loop-controlling
test is made again. If the program was written to recognize eof when originalNumber is 0,
then an extraneous answer of 0 will be displayed before the program ends. Depending on
the language you are using and on the type of input being used, the results might be worse:
The program might terminate by displaying an error message or the value output might

be indecipherable garbage. In any case, this last output is superfluous—no value should be
doubled and output after the eof condition is encountered.

As a general rule, a program-ending test should always come immediately after an input
statement because that’s the earliest point at which it can be evaluated. Therefore, the best
solution to the number-doubling problem remains the one shown in Figure 3-16—the
structured solution containing the priming input statement.

Understanding Simple Program Logic

o The instruction myAnswer = myNumber * 2 is an example of a processing operation.
In most programming languages, an asterisk is used to indicate multiplication, so this
instruction means “Change the value of the memory location myAnswer to equal the
value at the memory location myNumber times two.” Mathematical operations are not the
only kind of processing operations, but they are very typical. As with input operations,
hardware used for processing is irrelevant—after you write a program, it can
computers of different brand names, sizes, and speeds.

- help ber-doubling program, the output myAnswer instruction is an example of an
explam |mp0rtant Chapter ration. Within a particular program, this statement could cause the output
o »n the monitor (which might be a flat-panel plasma screen or a smartphone
concepts. Videos are part

the output could go to a printer (which could be laser or ink-jet), or the

’ 2 Id be written to a disk or DVD. The logic of the output process is the same no
Of the teXt S MIndTap “ 1t hardware device you use. When this instruction executes, the value stored
at the location named myAnswer is sent to an output device. (The output
remains in computer memory until something else is stored at the same
memory location or power is lost.)

@ Watch the video A Simple Program.

location of myNumber has a specific numeric address, but when you write programs, you seldom need
to be concerned with the value of the memory address; instead, you use the easy-to-remember name
you created. Computer programmers often refer to memory addresses using hexadecimal notation,

or base 16. Using this system, they might use a value like 42FFO1A to refer to a memory address.
Despite the use of letters, such an address is still a number. Appendix A contains information about the
hexadecimal numbering system.

ﬂ Computer memory consists of millions of numbered locations where data can be stored. The memory

TWO TRUTHS ~ ALIE

Understanding Simple Program

A program with syntax errors can execute but prOVIde

Although the syntax of programming language
logic can be expressed in different languages.

processing, and output.

{9IN09Xd J0UURD SI0.IS XBJUAS yum wei3oid y

TWO TRUTHS & A LIE mini quizzes
appear after each chapter section, with
answers provided. The quiz contains
three statements based on the preceding
section of text—two statements are

true and one is false. Answers give
immediate feedback without “giving away”
answers to the multiple-choice questions
and programming problems later in

the chapter. Students also have the option
to take these quizzes electronically
MindTap.

results. additional information—
for example, another

3. Most simple computer programs include steps |Ocati0n in the bOOk that
expands on a topic, or a
SIESPELIGITERVIBIETRUMESUSSCILEDW common error to avoid.

XiX

Assessment

provide
opportunities to practice chapter material.
These exercises increase in difficulty and
allow students to explore logical program-
XX ming concepts. Most exercises can be

completed using flowcharts, pseudocode,
or both. In addition, instructors can assign
the exercises as programming problems
to be coded and executed in a particular
programming language.

An Overview of Computers and Programming

Exercises

‘I I Review Questions
1.

Computer programs also are known as
a. data c. software

b. hardware d. information

The major computer operations incl
input, processing, and output.
hardware and software
sequence and looping
spreadsheets, word processing

Ao TR

MalSg Decisions

Visual Basic, C++, and Java are all

a. operating systems
b. programming languages

@ Programming Exercises

A programming language’s rules a 1. Assume that the following variables contain the values shown:

a. syntax numberBig = 100 wordBig = "Constitution"
b. logic numberMedium = 10 wordMedium = "Dance"
numberSmall = 1 wordSmall = "Toy”

The most important task of a comy For each of the following Boolean expressions, decide whether the statement is

create the rules for a programi true, false, or illegal.
translate English statements i
translate programming langua

execute machine language pro

. numberBig > numberSmall

. numberBig < numberMedium

numberMedium = numberSmall

. numberBig = wordBig

. numberBig = "Big"

. wordMedium > wordSmall

. wordSmall = "TOY"

. numberBig <= 5 * numberMedium + 50

. numberBig >= 2000

. numberBig > numberMedium + numberSmall

. numberBig > numberMedium AND numberBig < numberSmall
. numberBig = 100 OR numberBig > numberSmall

. numberBig < 10 OR numberSmall > 10

. numberBig = 300 AND numberMedium = 10 OR numberSmall = 1
. wordSmall > wordBig

. wordSmall > wordMedium

student comprehension of the
major ideas and techniques
presented. Twenty questions
follow each chapter.

I N N

o o3 B

2. Design a flowchart or pseudocode for a program that accepts two numbers from
a user and displays one of the following messages: First is larger, Second is larger,
Numbers are equal.

3. Design a flowchart or pseudocode for a program that accepts three numbers from
a user and displays a message if the sum of any two numbers equals the third.

4. Cecilia’s Boutique wants several lists of salesperson data. Design a flowchart or
pseudocode for the following:

a. A program that accepts one salesperson’s ID number, number of items sold
in the last month, and total value of the items and displays data message only
if the salesperson is a high performer—defined as a person who sells more
than 200 items in the month.

b. A program that accepts the salesperson’s data and displays a message only if
the salesperson is a high performer—defined a person who sells more than

200 items worth at least $1,000 in the month.

exercises ask students to modify
working logic based on new . A

] . . es a gross production
requested specifications. This d by multiplying a player's i
activity mirrors realworld tasks s slugging percentage, and

that students are likely to ogram for Arnie’s
encounter in their first programming KRStk

. hes. Calculate the

jobs. the height, width, and

¥ (the number of cubic inches
in a cubic foot). Theflbrogram accepts model names continuously until “XXX" is
entered. Use namedffonstants where appropriate. Also use modules, including
one that displays Eglllgfjob after the sentinel is entered for the model name.

‘X Performing Maintenance

1. A file named MAINTENANCEO02-01.txt is included with your downloadable
student files. Assume that this program is a working program in your
organization and that it needs modifications as described in the comments (lines
that begin with two slashes) at the beginning of the file. Your job is to alter the
program to meet the new specifications.

*— Find the Bugs

1. tr downloadable files for Chapter 2 include DEBUG02-01.txt, DEBUG02-02.
, and DEBUG02-03.txt. Each file starts with some comments that describe

e problem. Comments are lines that begin with two slashes (//). Following the
mments, each file contains pseudocode that has one or more bugs you must
d and correct.

2. ur downloadable files for Chapter 2 include a file named DEBUG02-04.jpg that
ntains a flowchart with syntax and/or logical errors. Examine the flowchart,

#Md then find and correct all the bugs.

ame Zone

—_

r gam¢. 1\ hold your interest, they almost always include some random,
predict: ble behavior. For example, a game in which you shoot asteroids loses

e of it fun if the asteroids follow the same, predictable path each time you
hy. Ther ‘ore, generating random values is a key component in creating most

are included
at the end of each chapter. Students can
create games as an additional entertaining
way to understand key programming
DEBUGGING EXERCISES are concepts.
included with each chapter because

examining programs critically and
closely is a crucial programming skill.
Students can download these exercises

at www.cengagebrain.com and through
MindTap. These files are also available
to instructors through sso.cengage.com.

MindTap

Other Features of the Text

This edition of the text includes many features to help students become better program-
mers and understand the big picture in program development.

e Clear explanations. The language and explanations in this book have been refined over
eight editions, providing the clearest possible explanations of difficult concepts.

e Emphasis on structure. More than its competitors, this book emphasizes
structure. Chapter 3 provides an early picture of the major concepts of structured
programming.

¢ Emphasis on modularity. From the second chapter onwards, students are encouraged
to write code in concise, easily manageable, and reusable modules. Instructors have
found that modularization should be encouraged early to instill good habits and
a clearer understanding of structure.

e Objectives. Each chapter begins with a list of objectives so that the student knows the
topics that will be presented in the chapter. In addition to providing a quick reference to
topics covered, this feature provides a useful study aid.

e Chapter summaries. Following each chapter is a summary that recaps the program-
ming concepts and techniques covered in the chapter.

o Key terms. Each chapter lists key terms and their definitions; the list appears in the
order that the terms are encountered in the chapter. A glossary at the end of the book
lists all the key terms in alphabetical order, along with their working definitions.

MindTap

MindTap is a personalized learning experience with relevant assignments that guide stu-
dents in analyzing problems, applying what they have learned, and improving their think-
ing. MindTap allows instructors to measure skills and outcomes with ease.

For instructors: Personalized teaching becomes yours with a learning path that is built with
key student objectives. You can control what students see and when they see it. You can use
MindTap as-is, or match it to your syllabus by hiding, rearranging, or adding content.

For students: A unique learning path of relevant readings, multimedia, and activities is cre-
ated to guide you through basic knowledge and comprehension of analysis and application.

For both: Better outcomes empower instructors and motivate students with analytics and
reports that provide a snapshot of class progress, the time spent in the course, engagement
levels, and completion rates.

The MindTap for Programming Logic and Design includes coding labs in C+ +, Java, and
Python, study tools, videos, and interactive quizzing, all integrated into an eReader that
includes the full content of the printed text.

Acknowledgments

Instructor Resources

The following teaching tools are available to the instructor for download through our
Instructor Companion Site at sso.cengage.com.

Instructor’s Manual. The Instructor’s Manual follows the text chapter by chapter to
assist in planning and organizing an effective, engaging course. The manual includes
learning objectives, chapter overviews, lecture notes, ideas for classroom activities, and
abundant additional resources. A sample course syllabus is also available.

PowerPoint Presentations. This text provides PowerPoint slides to accompany each
chapter. Slides are included to guide classroom presentations, and can be made available
to students for chapter review, or to print as classroom handouts.

Solutions. Solutions to review questions and exercises are provided to assist with grading.

Test Bank®. Cengage Learning Testing Powered by Cognero is a flexible, online system
that allows you to:

e author, edit, and manage test bank content from multiple Cengage Learning
solutions,

e create multiple test versions in an instant, and

o deliver tests from your LMS, your classroom, or anywhere you want.

Additional Options

Visual Logic™ software. Visual Logic is a simple but powerful tool for teaching
programming logic and design without traditional high-level programming language
syntax. Visual Logic also interprets and executes flowcharts, providing students with
immediate and accurate feedback.

Acknowledgments

I would like to thank all of the people who helped to make this book a reality, especially
Alyssa Pratt, Jennifer Feltri-George, Kristin McNary, Kate Mason, and all the other
professionals at Cengage Learning who made this book possible. Thanks, too, to my
husband, Geoff, and our daughters, Andrea and Audrey, for their support. This book, as
were all its previous editions, is dedicated to them.

—Joyce Farrell

An Overview
of Computers
and Programming

Upon completion of this chapter, you will be able to:

©@ © © ©@ @ ©

Describe computer systems
Understand simple program logic
List the steps involved in the program development cycle

Write pseudocode statements and draw flowchart symbols

Use a sentinel value to end a program
Understand programming and user environments
Describe the evolution of programming models

An Overview of Computers and Programming

Understanding Computer Systems

A computer system is a combination of all the components required to process and store
data using a computer. Every computer system is composed of multiple pieces of hardware
and software.

Hardware is the equipment, or the physical devices, associated with a computer.

For example, keyboards, mice, speakers, and printers are all hardware. The devices

are manufactured differently for computers of varying sizes—for example, large
mainframes, laptops, and very small devices embedded into products such as
telephones, cars, and thermostats. The types of operations performed by different-
sized computers, however, are very similar. Computer hardware needs instructions
that control its operations, including how and when data items are input, how they are
processed, and the form in which they are output or stored.

Software is computer instructions that tells the hardware what to do. Software is programs,
which are instruction sets written by programmers. You can buy prewritten programs that
are stored on a disk or that you download from the Web. For example, businesses use word-
processing and accounting programs, and casual computer users enjoy programs that play
music and games. Alternatively, you can write your own programs. When you write software
instructions, you are programming. This book focuses on the programming process.

Software can be classified into two broad types:

Application software comprises all the programs you apply to a task, such as word-
processing programs, spreadsheets, payroll and inventory programs, and games. When
you hear people say they have “downloaded an app onto a mobile device,” they are
simply using an abbreviation of application software.

System software comprises the programs that you use to manage your computer,
including operating systems such as Windows, Linux, or UNIX for larger computers
and Google Android and Apple iOS for smartphones.

This book focuses on the logic used to write application software programs, although many
of the concepts apply to both types of software.

Together, computer hardware and software accomplish three major operations in most programs:

Input: Data items enter the computer system and are placed in memory, where they can be
processed. Data items include all the text, numbers, and other raw material that are entered
into and processed by a computer. Hardware devices that perform input operations
include keyboards and mice. In business, many of the data items used are facts and figures
about such entities as products, customers, and personnel. Data, however, also can include
items such as images, sounds, and a user’s mouse or finger-swiping movements.

Processing: Processing data items may involve organizing or sorting them, checking
them for accuracy, or performing calculations with them. The hardware component
that performs these types of tasks is the central processing unit, or CPU. Some devices,
such as tablets and smartphones, usually contain multiple processors, and efficiently
using several CPUs requires special programming techniques.

Understanding Computer Systems

e Output: After data items have been processed, the resulting information usually is sent
to a printer, monitor, or some other output device so people can view, interpret, and use
the results. Programming professionals often use the term data for input items, but use
the term information for data items that have been processed and output. Sometimes
you place output on storage devices, such as your hard drive, flash media, or a
cloud-based device. (The cloud refers to devices at remote locations accessed through
the Internet.) People cannot read data directly from these storage devices, but the
devices hold information for later retrieval. When you send output to a storage device,
sometimes it is used later as input for another program.

You write computer instructions in a computer programming language such as Visual Basic,
C#, C++, or Java. Just as some people speak English and others speak Japanese, programmers
write programs in different languages. Some programmers work exclusively in one language,
whereas others know several and use the one that is best suited to the task at hand.

The instructions you write using a programming language are called program code; when
you write instructions, you are coding the program.

Every programming language has rules governing its word usage and punctuation. These
rules are called the language’s syntax. Mistakes in a language’s usage are syntax errors. If
you ask, “How the geet too store do I?” in English, most people can figure out what you
probably mean, even though you have not used proper English syntax—you have mixed up
the word order, misspelled a word, and used an incorrect word. However, computers are
not nearly as smart as most people; in this case, you might as well have asked the computer,
“Xpu mxv ort dod nmcad bf B?” Unless the syntax is perfect, the computer cannot interpret
the programming language instruction at all.

Figure 1-1 shows how the statement that displays the word Hello on a single line on a
computer monitor looks in some common programming languages. Notice that the syntax
of some languages require that a statement start with an uppercase letter, while the syntax
of others does not. Notice that some languages end statements with a semicolon, some with
a period, and some with no ending punctuation at all. Also notice that different verbs are
used to mean display, and that some are spelled like their like English word counterparts,
while others like cout and System.out.printin are not regular English words. The different
formats you see are just a hint of the various syntaxes used by languages.

Language Statement that displays Hello on a single line
Java System.out.printTn(“HelTl0);

C++ cout << “Hello” << endl;

Visual Basic Console.WriteLine(“Hel10”);

Python print “Hello”

COBOL DISPLAY “Hello”.

Figure 1-1 Displaying the word Hello in some common programming languages

An Overview of Computers and Programming

After you learn French, you automatically know, or can easily figure out, many Spanish words. Similarly,
after you learn one programming language, it is much easier to understand other languages.

When you write a program, you usually type its instructions using a keyboard. When you
type program instructions, they are stored in computer memory, which is a computer’s
temporary, internal storage. Random access memory, or RAM, is a form of internal,
volatile memory. Programs that are running and data items that are being used are stored in
RAM for quick access. Internal storage is volatile—its contents are lost when the computer
is turned off or loses power. Usually, you want to be able to retrieve and perhaps modify
the stored instructions later, so you also store them on a permanent storage device, such

as a disk. Permanent storage devices are nonvolatile—that is, their contents are persistent
and are retained even when power is lost. If you have had a power loss while working on

a computer, but were able to recover your work when power was restored, it’s not because
the work was still in RAM. Your system has been configured to automatically save your
work at regular intervals on a nonvolatile storage device—often your hard drive.

After a computer program is typed using programming language statements and stored

in memory, it must be translated to machine language that represents the millions of on/
off circuits within the computer. Your programming language statements are called source
code, and the translated machine language statements are object code.

Each programming language uses a piece of software, called a compiler or an interpreter,
to translate your source code into machine language. Machine language also is called
binary language, and is represented as a series of Os and 1s. The compiler or interpreter
that translates your code tells you if any programming language component has been used
incorrectly. Syntax errors are relatively easy to locate and correct because your compiler or
interpreter highlights them. If you write a computer program using a language such as C++,
but spell one of its words incorrectly or reverse the proper order of two words, the software
lets you know that it found a mistake by displaying an error message as soon as you try to
translate the program.

same—to translate your programming statements into code the computer can use. When you use

a compiler, an entire program is translated before it can execute; when you use an interpreter, each
instruction is translated just prior to execution. Usually, you do not choose which type of translation to
use—it depends on the programming language. However, some languages can use both compilers and
interpreters.

ﬂ Although there are differences in how compilers and interpreters work, their basic function is the

After a program’s source code is translated successfully to machine language, the computer

can carry out the program instructions. When instructions are carried out, a program runs,
or executes. In a typical program, some input will be accepted, some processing will occur,
and results will be output.

Understanding Simple Program Logic

programmers use scripting languages (also called scripting programming languages or script
languages) such as Python, Lua, Perl, and PHP. Scripts written in these languages usually can be typed
directly from a keyboard and are stored as text rather than as binary executable files. Scripting language
programs are interpreted line by line each time the program executes, instead of being stored in a
compiled (binary) form. Still, with all programming languages, each instruction must be translated to
machine language before it can execute.

ﬂ Besides the popular, comprehensive programming languages such as Java and C++, many

TWO TRUTHS ALIE

Understanding Computer Systems

In each Two Truths & a Lie section, two of the numbered statements are true, and
one is false. |dentify the false statement and explain why it is false.

1. Hardware is the equipment, or the devices, associated with a computer.
Software is computer instructions.

The grammar rules of a computer programming language are its syntax.

3. You write programs using machine language, and translation software
converts the statements to a programming language.

"ST pue SO SI yaiym ‘a3en3ue| suiydewl 0} SJUSLLIBIE]S aU} SMBAUOD (Ja1aidusiul
40 J3|Idwod e pajed) weadoid uoije|suel) e pue ‘eAef Jo dlseq [ensiA Se yans
a8engdue| Sulwwel3oad e 3uisn swea3oid 81UM NOA "S# S JUSWBL]S as|e} ay |

Understanding Simple Program Logic

For a program to work properly, you must develop correct logic; that is, you must write
program instructions in a specific sequence, you must not leave out any instructions,

and you must not add extraneous instructions. A program with syntax errors cannot be
translated fully and cannot execute. A program with no syntax errors is translatable and can
execute, but it still might contain logical errors and produce incorrect output as a result.

Suppose you instruct someone to
make a cake as follows:

Don’t Do It
Ge1': a bowl Don't bake a cake like
Stir this!

Add two eggs

Add a gallon of gasoline
Bake at 350 degrees for 45 minutes
Add three cups of flour

An Overview of Computers and Programming

The dangerous cake-baking instructions are shown with a Don’t Do It icon. You will see this icon when the
book contains an unrecommended programming practice that is used as an example of what not to do.

Even though the cake-baking instructions use English language syntax correctly, the
instructions are out of sequence, some are missing, and some instructions belong to
procedures other than baking a cake. If you follow these instructions, you will not make an
edible cake, and you may end up with a disaster. Many logical errors are more difficult to
locate than syntax errors—it is easier for you to determine whether eggs is spelled incorrectly
in a recipe than it is for you to tell if there are too many eggs or if they are added too soon.

Most simple computer programs include steps that perform input, processing, and output.
Suppose you want to write a computer program to double any number you provide. You
can write the program in a programming language such as Visual Basic or Java, but if you
were to write it using English-like statements, it would look like this:

input myNumber
myAnswer = myNumber * 2
output myAnswer

The number-doubling process includes three instructions:

e The instruction to input myNumber is an example of an input operation. When the
computer interprets this instruction, it knows to look to an input device to obtain a
number. When you work in a specific programming language, you write instructions
that tell the computer which device to access for input. For example, when a user enters
a number as data for a program, the user might click on the number with a mouse, type
it from a keyboard, or speak it into a microphone. Logically, however, it doesn’t matter
which hardware device is used, as long as the computer knows to accept a number.
When the number is retrieved from an input device, it is placed in the computer’s
memory in a variable named myNumber. A variable is a named memory location whose
value can vary—that is, hold different values at different points in time. For example, the
value of myNumber might be 3 when the program is used for the first time and 45 when
it is used the next time. In this book, variable names will not contain embedded spaces;
for example, the book will use myNumber instead of my Number.

The same is true in your daily life. If you follow the instruction “Get eggs for the cake,” it does not really
matter if you purchase them from a store or harvest them from your own chickens—you get the eggs either
way. There might be different practical considerations to getting the eggs, just as there are for getting data
from a large database as opposed to getting data from an inexperienced user working at home on a laptop
computer. For now, this book is concerned only with the logic of operations, not the minor details.

ﬂ From a logical perspective, when you input, process, or output a value, the hardware device is irrelevant.

hold different contents at different times. For example, your Logic class might meet there on Monday

A college classroom is similar to a named variable in that its name (perhaps 204 Adams Building) can
ﬂ night, and a math class might meet there on Tuesday morning.

Understanding Simple Program Logic

e The instruction myAnswer = myNumber * 2 is an example of a processing operation.
In most programming languages, an asterisk is used to indicate multiplication, so this
instruction means “Change the value of the memory location myAnswer to equal the
value at the memory location myNumber times two.” Mathematical operations are not the
only kind of processing operations, but they are very typical. As with input operations,
the type of hardware used for processing is irrelevant—after you write a program, it can
be used on computers of different brand names, sizes, and speeds.

e In the number-doubling program, the output myAnswer instruction is an example of an
output operation. Within a particular program, this statement could cause the output
to appear on the monitor (which might be a flat-panel plasma screen or a smartphone
display), or the output could go to a printer (which could be laser or ink-jet), or the
output could be written to a disk or DVD. The logic of the output process is the same no
matter what hardware device you use. When this instruction executes, the value stored
in memory at the location named myAnswer is sent to an output device. (The output
value also remains in computer memory until something else is stored at the same
memory location or power is lost.)

O Watch the video A Simple Program.

location of myNumber has a specific numeric address, but when you write programs, you seldom need
to be concerned with the value of the memory address; instead, you use the easy-to-remember name
you created. Computer programmers often refer to memory addresses using hexadecimal notation,

or base 16. Using this system, they might use a value like 42FFO1A to refer to a memory address.
Despite the use of letters, such an address is still a number. Appendix A contains information about the
hexadecimal numbering system.

ﬂ Computer memory consists of millions of numbered locations where data can be stored. The memory

TWO TRUTHS ALIE

Understanding Simple Program Logic
1. A program with syntax errors can execute but might produce incorrect
results.

2. Although the syntax of programming languages differs, the same program
logic can be expressed in different languages.

3. Most simple computer programs include steps that perform input,
processing, and output.

*S]NsaJ 1084400uU1 92npoad YSIW Ing ‘9IN28%e UL SJ04ID XeJUAS ou yum weigoid e
19]N23X3 J0UURD SJOJID XBJUAS Ypm wel3oid \ “T# SI Juswialels as|e) ay|

An Overview of Computers and Programming

Understanding the Program Development Cycle

A programmer’s job involves writing instructions (such as those in the doubling program
in the preceding section), but a professional programmer usually does not just sit down
at a computer keyboard and start typing. Figure 1-2 illustrates the program development
cycle, which can be broken down into at least seven steps:

1. Understand the problem.
2. Plan the logic.

3. Code the program.

4

Use software (a compiler or interpreter) to translate the program into machine
language.

o

Test the program.
6. Put the program into production.

7. Maintain the program.

Understand
the problem
Maintain the Plan the
program logic
Put the program Write the
into production code
Test the Translate the
program code

Figure 1-2 The program development cycle

Understanding the Problem

Professional computer programmers write programs to satisfy the needs of others, called
users or end users. Examples of end users include a Human Resources department that
needs a printed list of all employees, a Billing department that wants a list of clients who
are 30 or more days overdue on their payments, and an Order department that needs

a website to provide buyers with an online shopping cart. Because programmers are
providing a service to these users, programmers must first understand what the users

Understanding the Program Development Cycle

want. When a program runs, you usually think of the logic as a cycle of input-processing-
output operations, but when you plan a program, you think of the output first. After you
understand what the desired result is, you can plan the input and processing steps to
achieve it.

Suppose the director of Human Resources says to a programmer, “Our department needs a
list of all employees who have been here over five years, because we want to invite them to a
special thank-you dinner” On the surface, this seems like a simple request. An experienced
programmer, however, will know that the request is incomplete. For example, you might not
know the answers to the following questions about which employees to include:

e Does the director want a list of full-time employees only, or a list of full- and part-time
employees together?

e Does she want to include people who have worked for the company on a month-to-
month contractual basis over the past five years, or only regular, permanent employees?

e Do the listed employees need to have worked for the organization for five years as of
today, as of the date of the dinner, or as of some other cutoff date?

e What about an employee who worked three years, took a two-year leave of absence, and
has been back for three years?

The programmer cannot make any of these decisions; the user (in this case, the human
resources director) must address these questions.

More decisions still might be required. For example:

e What data should be included for each listed employee? Should the list contain both
first and last names? Social Security numbers? Phone numbers? Addresses?

e Should the list be in alphabetical order? Employee ID number order? Length-of-service
order? Some other order?

e Should the employees be grouped by any criteria, such as department number or years
of service?

Several pieces of documentation often are provided to help the programmer understand
the problem. Documentation consists of all the supporting paperwork for a program; it
might include items such as original requests for the program from users, sample output,
and descriptions of the data items available for input.

Understanding the problem might be even more difficult if you are writing an app that

you hope to market for mobile devices. Business developers usually are approached by a
user with a need, but successful developers of mobile apps often try to identify needs that
users aren’t even aware of yet. For example, no one knew they wanted to play Angry Birds
or leave messages on Facebook before those applications were developed. Mobile app
developers also must consider a wider variety of user skills than programmers who develop
applications that are used internally in a corporation. Mobile app developers must make
sure their programs work with a range of screen sizes and hardware specifications because
software competition is intense and the hardware changes quickly.

